Derivative Bounds for Müntz Polynomials*

D. J. Newman
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033
Communicated by Oved Shisha

Received July 10, 1975

Let Λ be a finite set of positive numbers, λ, and consider expressions of the form $C_{0}+\sum_{\Lambda} C_{\lambda} x^{\lambda}$. We wish to detremine just how much such a function can be magnified by differentiation on [0,1]. Since 0 is a peculiar point (where x^{λ} can even have an infinite derivative), we find it more natural to consider the operator $x(d / d x)$. Equivalently we may transform variables by $x=e^{-t}$ which reduces our operator to $d / d t$ and our interval to $[0, \infty)$.

So call the expressions $P(t)=C_{0}+\sum_{\Lambda} C_{\lambda} e^{-\lambda t} \quad \Lambda$-polynomials and introduce the norm $\|f(t)\|=\operatorname{Sup}_{[0, \infty)}|f(t)|$.

Our problem, in precise terms, is to find $\|d / d t\|_{A}=\operatorname{Sup}_{P}\left\|P^{\prime}(t)\right\| /\|P(t)\|$ taken over all nontrivial Λ-polynomials.

For example, when Λ consists of the first n integers, then this reduces to the classical Tchebychev polynomial case and the answer is known to be $2 n^{2}$. One corollary of our present results is that if Λ consists of any n distinct integers, then $\|d / d t\|_{\Lambda} \geqslant \frac{1}{3} n^{2}$. (Perhaps this is even true with $2 n^{2}$ replacing $\frac{1}{3} n^{2}$, but we cannot obtain this precision.)

Theorem. For every set Λ we have

$$
\frac{2}{3} \sum_{\Lambda} \lambda \leqslant\|d / d t\|_{\Lambda} \leqslant 11 \sum_{\Lambda} \lambda .
$$

Proof. We may assume, w.l.o.g., that $\sum_{\Lambda} \lambda=1$ as this can always be achieved by a mere change of scale, $t^{\prime}=c t$. So set $B(z)=\Pi_{\Lambda}((z-\lambda) /(z+\lambda))$ and define

$$
\begin{equation*}
T(t)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{-z t}}{B(z)} d z, \quad \Gamma \text { the circle }|z-1|=1 \tag{1}
\end{equation*}
$$

A direct application of the residue theorem shows that $T(t)$ is indeed a Λ-polynomial.

[^0]To obtain our desired estimates we will need the following

Lemma. All along $\Gamma,|B(z)| \geqslant \frac{1}{3}$.
Proof. The function $(z-\lambda) /(z+\lambda)$ maps Γ onto the circle whose diameter is the interval $[-1,(2-\lambda) /(2+\lambda)]$ so that, on Γ, we certainly have

$$
\left|\frac{z-\lambda}{z+\lambda}\right| \geqslant \frac{2-\lambda}{2+\lambda}=\frac{1-(\lambda / 2)}{1+(\lambda / 2)}
$$

and therefore

$$
|B(z)| \geqslant \Pi \frac{1-(\lambda / 2)}{1+(\lambda / 2)}
$$

To estimate this product, note that, for x and $y \geqslant 0$, $\frac{1-x}{1+x} \frac{1-y}{1+y}=\frac{1-(x+y)}{1+x+y}+\frac{2 x y}{(1+x)(1+y)(1+x y)} \geqslant \frac{1-(x+y)}{1+x+y}$,
and this inequality used repeatedly gives

$$
\prod \frac{1-(\lambda / 2)}{1+(\lambda / 2)} \geqslant \frac{1-\frac{1}{2} \sum \lambda}{1+\frac{1}{2} \sum \lambda}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3},
$$

as required.
We can now prove our lower bound. For the Λ-polynomial $T(t)$ we have by (1) and our lemma,

$$
\begin{equation*}
|T(t)| \leqslant \frac{1}{2 \pi} \int_{\Gamma}\left|\frac{e^{-z t}}{B(z)}\right||d z| \leqslant \frac{1}{2 \pi} \cdot 3 \cdot 2 \pi=3 \tag{2}
\end{equation*}
$$

while, again by (1), $T^{\prime}(0)=-(1 / 2 \pi i) \int_{\Gamma}(z / B(z)) d z$ and this integral can be evaluated by taking the residue at ∞, there being no poles outside of Γ. We have, namely,

$$
\begin{align*}
\frac{1}{B(z)}=\prod \frac{1+(\lambda / z)}{1-(\lambda / z)} & =1+\frac{2 \sum \lambda}{z}+\frac{2\left(\sum \lambda\right)^{2}}{z^{2}}+\cdots \\
& =1+\frac{2}{z}+\frac{2}{z^{2}}+\cdots \tag{3}
\end{align*}
$$

so that $z / B(z)=z+2+(2 / z)+\cdots$, the residue is 2 , and we obtain

$$
\begin{equation*}
T^{\prime}(0)=-2 \tag{4}
\end{equation*}
$$

Our lower bound is implied by (2) together with (4).

Our upper bound is more complicated and we begin with an estimate for $\int_{0}^{\infty}\left|T^{\prime \prime}(t)\right| d t$. To this end we see from (1) that

$$
\begin{equation*}
T^{\prime \prime}(t)=(1 / 2 \pi i) \int_{\Gamma}\left(z^{2} e^{-z t} / B(z)\right) d z \tag{5}
\end{equation*}
$$

so that, writing $z=1+e^{i \theta}$ and applying our lemma, we obtain $\left|T^{\prime \prime}(t)\right| \leqslant$ $(3 / 2 \pi) \int_{0}^{2 \pi} 2(1+\cos \theta) e^{-(1+\cos \theta) t} d \theta$, which yields

$$
\begin{equation*}
\int_{0}^{\infty}\left|T^{\prime \prime}(t)\right| d t \leqslant \frac{3}{2 \pi} \int_{0}^{2 \pi} 2(1+\cos \theta) \frac{1}{1+\cos \theta} d \theta=6 \tag{6}
\end{equation*}
$$

Next we evaluate $\int_{0}^{\infty} e^{-\lambda t} T^{\prime \prime}(t) d t, \lambda \in \Lambda$. From (5) we have $\int_{0}^{\infty} e^{-\lambda t} T^{\prime \prime}(t) d t=$ $(1 / 2 \pi i) \int_{\Gamma}\left(z^{2} d z / B(z)(z+\lambda)\right)$ and as before there are no poles outside of Γ and we need only find the residue at ∞. Again, by (3), we have $1 / B(z)=$ $1+(2 / z)+\left(2 / z^{2}\right)+\cdots$ and we also have $1 /(z+\lambda)=(1 / z)-\left(\lambda / z^{2}\right)+$ $\left(\lambda^{2} / \lambda^{3}\right) \cdots$ so that combining gives $z^{2} / B(z)(z+\lambda)=z+2-\lambda+\left(\left(\lambda^{2}-\right.\right.$ $2 \lambda+2) / z)+\cdots$. Thus $\int_{0}^{\infty} e^{-\lambda t} T^{\prime \prime}(t) d t=\lambda^{2}-2 \lambda+2$, and taking linear combinations results in

$$
\begin{equation*}
\int_{0}^{\infty} P(t+a) T^{\prime \prime}(t) d t=P^{\prime \prime}(a)-2 P^{\prime}(a)+2 P(a) \tag{7}
\end{equation*}
$$

for any -polynomial.
Applying our estimate (6) to (7), then, gives the bqund $\left|P^{\prime \prime}(a)\right| \leqslant$ $2\left|P^{\prime}(a)\right|+8\|P(t)\|$ and letting a vary yields

$$
\begin{equation*}
\left\|P^{\prime \prime}\right\| \leqslant 2\left\|P^{\prime}\right\|+8\|P\| \tag{8}
\end{equation*}
$$

It is a well-known result, however (see [1]), that for any C^{2} function on $[0, \infty),\left\|f^{\prime}\right\|^{2} \leqslant 4\|f\| \cdot\left\|f^{\prime \prime}\right\|$. If this is applied to (8) we obtain $\frac{1}{4}\left(\left\|P^{\prime}\right\| /\|P\|\right)^{2} \leqslant$ $2\left(\left\|P^{\prime}\right\| /\|P\|\right)+8$ which trivially ensures $\left\|P^{\prime}\right\| /\|P\| \leqslant 11$, our upper bound.
(It might seem circuitous to have to resort to second-derivative estimates, but the direct approach, via $\int_{0}^{\infty}\left|T^{\prime}(t)\right| d t$, does not appear to lend itself to uniform estimates.)

Reference

1. A. Kolmogorov, Inequalities on successive derivatives..., C. R. Acad. Sci. Paris 207 (1938), 764-765.

[^0]: * Supported in part by National Science Foundation Grant No. M.P.S. 75-08002.

