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Let A be a finite set of positive numbers, ..\, and consider expressions of
the form Co + LA CAXA• We wish to detremine just how much such a
function can be magnified by differentiation on [0, I]. Since 0 is a peculiar
point (where xA can even have an infinite derivative), we find it more natural
to consider the operator x(d/dx). Equivalently we may transform variables
by x = e-t which reduces our operator to d/dt and our interval to [0, (0).

So call the expressions pet) = Co + LA CAe-At A-polynomials and
introduce the norm II J(t)11 = SUP[o,oo) IJ(t)l.

Our problem, in precise terms, is to find II d/dt IIA = Supp II r(t)II/11 P(t)ll
taken over all nontrivial A-polynomials.

For example, when A consists of the first n integers, then this reduces to
the classical Tchebychev polynomial case and the answer is known to be 2n2

•

One corollary of our present results is that if A consists of any n distinct
integers, then II d/dt IIA ?' !n2

• (Perhaps this is even true with 2n2 replacing !n2
,

but we cannot obtain this precision.)

THEOREM. For every set A we have

i L'\ ~ [[ d/dt IIA ~ 11 L '\.
A A

Proof We may assume, w.l.o.g., that LA'\ = I as this can always be
achieved by a mere change of scale, t' = ct. So set B(z) = OA ((z - '\)/(z + ,\))
and define

I f e-zt

T(t) = 2Tri r B(z) dz, r the circle I z - I I = 1. (1)

A direct application of the residue theorem shows that T(t) is indeed a
A-polynomial.
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MUNTZ POLYNOMIALS

To obtain our desired estimates we will need the following
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LEMMA. All along r, IB(z)I ~ t.

Proof The function (z - A)/(z+A) maps r onto the circle whose diameter
is the interval [-I, (2 - A)/(2 + A)] so that, on r, we certainly have

I
z - A\ 2 - A= I - (>";2)
z + A ~ 2 + A I + (>../2)

and therefore

I - (>";2)
I B(z)j ~ IT 1 + (>";2) .

To estimate this product, note that, for x and y ~ 0,

1 - x 1 - y = 1 - (x + y) + 2xy >-: 1 - (x + y)
1 + x 1 + y 1 + x + y (1 + x)(1 + y)(1 + xy):/' 1 + x + y ,

and this inequality used repeatedly gives

I - (>";2) 1 - t L A 1 - t 1
IT 1 + (AI2) ~ 1 + t L A = 1 + t ="3'

as required.
We can now prove our lower bound. For the A-polynomial T(t) we have

by (1) and our lemma,

1 f I e-
zt I 1I T(Oj ~ 27T r B(z) Idz I ~ 27T . 3 . 27T = 3, (2)

while, again by (1), T'(O) = -(1/27Ti) Ir (zIB(z» dz and this integral can be
evaluated by taking the residue at 00, there being no poles outside of r.
We have, namely,

_1_ = IT 1 + (>";z) = 1 + 2 L A + 2(L A)2 + ...
B(z) 1 - (>";z) Z Z2

= 1 + ~ + ;2 + ... (3)

so that zIB(z) = z + 2 + (2Iz) + "', the residue is 2, and we obtain

T(O) = -2.

Our lower bound is implied by (2) together with (4).

(4)
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OUf upper bound is more complicated and we begin with an estimate for
I: I r(t)1 dt. To this end we see from (l) that

T"(t) = (l/27Ti) t (z2e-zt/B(z» dz, (5)

(6)

so that, writing z = 1 + eiO and applying our lemma, we obtain I T"(t) I ~
(3/27T) I~" 2(1 + cos B) e-(1+coSOlt dB, which yields

(' I T"(t)1 dt ~ 2~ f1T 2(1 + cos B) 1 + ~os B dB = 6.

Next we evaluate I: e-Atr(t) dt, t\ E A. From (5) we have S: e-Atr(t) dt =
(I/27Ti) Ir (Z2 dzIB(z)(z + t\» and as before there are no poles outside of r
and we need only find the residue at 00. Again, by (3), we have IIB(z) =
1 + (2Iz) + (2Iz2) + ... and we also have I/(z + t\) = (lIz) - (Afz2) +
(t\2/t\3) ... so that combining gives z2IB(z)(z + t\) = z + 2 - t\ + ((t\2 
2t\ + 2)/z) + .... Thus f: e-AtT"(t) dt = t\2 - 2t\ + 2, and taking linear
combinations results in

fJ pet + a) T"(t) dt = rea) - 2P'(a) + 2P(a)
o

(7)

for any A-polynomial.
Applying our estimate (6) to (7), then, gives the bQund I r(a) I ~

2 I pI(a)I + 8 II P(t)11 and letting a vary yields

II P" II ~ 211 pIli + 8 II P II (8)

It is a well-known result, however (see [1]), that for any C2 function on
[0, (0), 11f' 112~ 411/11 '11i" II. If this is applied to (8) we obtain HII P' II/II P 11)2 ~
2(11 p' 11111 P II) + 8 which trivially ensures II P' IIII1 P II ~ 11, our upper bound.

(It might seem circuitous to have to resort to second-derivative estimates,
but the direct approach, via S: I T'(t) Idt, does not appear to lend itself to
uniform estimates.)
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